
A linear process-algebraic format for probabilistic systems with data

Joost-Pieter Katoen†∗, Jaco van de Pol∗, Mariëlle Stoelinga∗ and Mark Timmer∗

∗Formal Methods and Tools, Faculty of EEMCS †Software Modeling and Verification
University of Twente, The Netherlands RWTH Aachen University, Germany
{vdpol, marielle, timmer}@cs.utwente.nl katoen@cs.rwth-aachen.de

Abstract—This paper presents a novel linear process-
algebraic format for probabilistic automata. The key ingredient
is a symbolic transformation of probabilistic process algebra
terms that incorporate data into this linear format while
preserving strong probabilistic bisimulation. This generalises
similar techniques for traditional process algebras with data,
and — more importantly — treats data and data-dependent
probabilistic choice in a fully symbolic manner, paving the way
to the symbolic analysis of parameterised probabilistic systems.

Keywords-probabilistic process algebra, linearisation, data-
dependent probabilistic choice, symbolic transformations

I. INTRODUCTION

Efficient model checking algorithms exist, supported by
powerful software tools, for verifying qualitative and quan-
titative properties for a wide range of probabilistic models.
These techniques are applied in areas like security, ran-
domised distributed algorithms, systems biology, and de-
pendability and performance analysis. Major deficiencies of
probabilistic model checking are the state explosion problem
and the restricted treatment of data.

As opposed to process calculi like µCRL [1] and E-
LOTOS, which support rich data types, the treatment of data
in modelling formalisms for probabilistic systems is mostly
neglected. Instead, the focus has been on understanding ran-
dom phenomena and the interplay between randomness and
nondeterminism. Data is treated in a restricted manner: prob-
abilistic process algebras typically allow a random choice
over a fixed distribution, and input languages for model
checkers such as the reactive module language of PRISM [2]
or the probabilistic variant of Promela [3] only support basic
data types, but neither support more advanced data structures
or parameterised (i.e., state-dependent) random choice. To
model realistic systems, however, convenient means for data
modelling are indispensable.

Although parameterised probabilistic choice is seman-
tically well-defined [4], the incorporation of data yields
a significant increase of, or even an infinite, state space.
Aggressive abstraction techniques for probabilistic models
(e.g., [5], [6], [7], [8], [9]) obtain smaller models at the

This research has been partially funded by NWO under grant 612.063.817
(SYRUP) and grant Dn 63-257 (ROCKS), and by the European Union under
FP7-ICT-2007-1 grant 214755 (QUASIMODO).

model level, but the successful analysis of data requires sym-
bolic reduction techniques. Such methods reduce stochastic
models using syntactic transformations at the language level,
minimising state spaces prior to their generation while
preserving functional and quantitative properties. Other ap-
proaches that partially deal with data are probabilistic CE-
GAR ([10], [11]) and the probabilistic GCL [12].

Our aim is to develop symbolic minimisation techniques
— operating at the syntax level — for data-dependent
probabilistic systems. The starting point for our work is
laid down in this paper. We define a probabilistic variant
of the process-algebraic µCRL language [1], named prCRL,
which treats data as first-class citizens. The language prCRL
contains a carefully chosen minimal set of basic operators,
on top of which syntactic sugar can be defined easily, and
allows data-dependent probabilistic branching. To enable
symbolic reductions, we provide a two-phase algorithm to
transform prCRL terms into LPPEs: a probabilistic variant
of linear process equations (LPEs) [13], which is a restricted
form of process equations akin to the Greibach normal form
for string grammars. We prove that our transformation is
correct, in the sense that it preserves strong probabilistic
bisimulation [14]. Similar linearisations have been provided
for plain µCRL [15] and a real-time variant thereof [16].

To motivate the expected advantage of a probabilistic
linear format, we draw an analogy with the purely functional
case. There, LPEs have provided a uniform and simple
format for a process algebra with data. As a consequence
of this simplicity, the LPE format was essential for theory
development and tool construction. It lead to elegant proof
methods, like the use of invariants for process algebra [13],
and the cones and foci method for proof checking process
equivalence ([17], [18]). It also enabled the application
of model checking techniques to process algebra, such
as optimisations from static analysis [19] (including dead
variable reduction [20]), data abstraction [21], distributed
model checking [22], symbolic model checking (either with
BDDs [23] or by constructing the product of an LPE
and a parameterised µ-calculus formula ([24], [25])), and
confluence reduction [26] (a form of partial-order reduction).

In all these cases, the LPE format enabled a smooth
theoretical development with rigorous correctness proofs
(often checked in PVS), and a unifying tool implementation,

10th International Conference on Application of Concurrency to System Design

1550-4808/10 $26.00 © 2010 IEEE

DOI 10.1109/ACSD.2010.18

213

s0

•

s4s3 s5

•

s1 s2

•

s6 s7

a
a b

.0.3
0.6 0.10.2 0.8 0.5 0.5

Figure 1. A probabilistic automaton.

enabling the cross-fertilisation of the various techniques by
composing them as LPE-LPE transformations.

To demonstrate the whole process of going from prCRL
to LPPE and applying reductions to this LPPE, we discuss
a case study of a leader election protocol.

We refer the reader to [27] for the extended version of
the current paper, which includes proofs of all theorems and
propositions and more details about the case study.

II. PRELIMINARIES

Let S be a finite set, then P(S) denotes its powerset, i.e.,
the set of all its subsets, and Distr(S) denotes the set of all
probability distributions over S, i.e., all functions µ : S →
[0, 1] such that

∑
s∈S µ(s) = 1. If S′ ⊆ S, let µ(S′) denote∑

s∈S′ µ(s). For the injective function f : S → T , let µf ∈
Distr(T) such that µf (f(s)) = µ(s) for all s ∈ S. We
use {∗} to denote a singleton set with a dummy element,
and denote vectors and sets of vectors in bold.

A. Probabilistic automata

Probabilistic automata (PAs) are similar to labelled tran-
sition systems (LTSs), except that the transition function
relates a state to a set of pairs of actions and distribution
functions over successor states [28].

Definition 1. A probabilistic automaton (PA) is a tuple A =
〈S, s0, A,∆〉, where

• S is a finite set of states, of which s0 is initial;
• A is a finite set of actions;
• ∆: S →P(A×Distr(S)) is a transition function.

When (a, µ) ∈ ∆(s), we write s
a→ µ. This means that

from state s the action a can be executed, after which the
probability to go to s′ ∈ S equals µ(s′).

Example 1. Figure 1 shows an example PA. Observe the
nondeterministic choice between actions, after which the
next state is determined probabilistically. Note that the same
action can occur multiple times, each time with a different
distribution to determine the next state. For this PA we have
s0

a→ µ, where µ(s1) = 0.2 and µ(s2) = 0.8, and µ(si) = 0
for all other states si. Also, s0

a→ µ′ and s0
b→ µ′′, where

µ′ and µ′′ can be obtained similarly.

B. Strong probabilistic bisimulation

Strong probabilistic bisimulation [14] is a probabilistic
extension of the traditional notion of bisimulation introduced
by Milner [29], equating any two processes that cannot be
distinguished by an observer. Two states s, t of a PA A
are strongly probabilistic bisimilar (denoted by s ≈ t) if
there exists an equivalence relation R ⊆ SA×SA such that
(s, t) ∈ R, and for all (p, q) ∈ R and p

a→ µ there is a
transition q

a→ µ′ such that µ ∼R µ′. Here, µ ∼R µ′ is
defined as ∀C . µ(C) = µ′(C), with C ranging over the
equivalence classes of states modulo R.

C. Isomorphism

Two states s and t of a PA A = 〈S, s0, A,∆〉 are
isomorphic (which we denote by s ≡ t) if there exists a
bijection f : S → S such that f(s) = t and ∀s′ ∈ S, µ ∈
Distr(S), a ∈ A . s′

a→ µ ⇔ f(s′)
a→ µf . Obviously,

isomorphism implies strong probabilistic bisimulation.

III. A PROCESS ALGEBRA WITH PROBABILISTIC CHOICE

A. The language prCRL

We add a probabilistic choice operator to a restriction
of full µCRL [1], obtaining a language called prCRL.
We assume an external mechanism for the evaluation of
expressions (e.g., equational logic), able to handle at least
boolean expressions and real-valued expressions. Also, we
assume that all closed expressions can be evaluated. Note
that this restricts the expressiveness of the data language.
Let Act be a countable set of actions.

Definition 2. A process term in prCRL is any term that can
be generated by the following grammar.

p ::= Y (t) | c⇒ p | p+ p |
∑
x:D

p | a(t)
∑
•
x:D

f : p

Here, Y is a process name, c a boolean expression, a ∈ Act
a (parameterised) atomic action, f a real-valued expression
yielding values in [0, 1] (further restricted below), t a vector
of expressions, and x a variable ranging over type D. We
write p = p′ for syntactically identical process terms.

A process equation is an equation of the form
X(g : G) = p, where g is a vector of global variables
and G a vector of their types, and p is a process term
in which all free variables are elements of g; X(g : G) is
called a process with process name X and right-hand side p.
To obtain unique solutions, indirect (or direct) unguarded re-
cursion is not allowed. Moreover, every construct

∑
•
x:D f in

a right-hand side p should comply to
∑
d∈D f [x := d] = 1

for every possible valuation of the variables in p (the
summation now used in the mathematical sense). A prCRL
specification is a set of process equations Xi(gi : Gi) = pi
such that all Xi are named differently, and for every process
instantiation Y (t) occurring in some pi there exists a
process equation Y (gi : Gi) = pi such that t is of type Gi.

214

Table I
SOS RULES FOR PRCRL.

INST
p[g := t]

α−→ µ

Y (t)
α−→ µ

if Y (g : G) = p IMPLIES
p

α−→ µ

c⇒ p
α−→ µ

if c holds

NCHOICE-L
p

α−→ µ

p+ q
α−→ µ

NSUM
p[x := d]

α−→ µ∑
x:D

p
α−→ µ

for any d ∈ D NCHOICE-R
q

α−→ µ

p+ q
α−→ µ

PSUM
−

a(t)
∑
•
x:D

f : p
a(t)−→ µ

where ∀d ∈ D . µ(p[x := d]) =
∑
d′∈D

p[x:=d]=p[x:=d′]

f [x := d′]

The initial process of a specification P is an instantiation
Y (t) such that there exists an equation Y (g : G) = p in P ,
t is of type G, and Y (t) does not contain any free variables.

In a process term, Y (t) denotes process instantiation
(allowing recursion). The term c ⇒ p is equal to p
if the condition c holds, and cannot do anything oth-
erwise. The + operator denotes nondeterministic choice,
and

∑
x:D p a (possibly infinite) nondeterministic choice

over data type D. Finally, a(t)
∑
•
x:D f : p performs the

action a(t) and then does a probabilistic choice over D.
It uses the value f [x := d] as the probability of choosing
each d ∈ D. We do not consider process terms of the form
p · p (where · denotes sequential composition), because this
would significantly increase the difficulty of linearisation as
it requires using a stack [16]. Moreover, most specifications
used in practice can be written without this form.

The operational semantics of prCRL is given in terms of
PAs. The states are closed process terms, the initial state is
the initial process, the action set is Act, and the transition
relation is the smallest relation satisfying the SOS rules in
Table I. Here, p[x := d] is used to denote the substitution of
all occurrences of x in p by d. Similarly, p[x := t] denotes
the substitution of every x(i) in p by t(i). For brevity, we
use α to denote an action name together with its parameters.
A mapping to PAs is only provided for processes without
any free variables; this is consistent with Definition 2.

Proposition 1. The SOS-rule PSUM defines a probability
distribution µ.

Example 2. The following process equation models a system
that continuously writes data elements of the finite type D
randomly. After each write, it beeps with probability 0.1.
Recall that {∗} denotes a singleton set with an anonymous
element. We use it here since the probabilistic choice is
trivial and the value of j is never used.

B() = τ()
∑
•
d:D

1
|D| : send(d)

∑
•

i:{1,2}

(if i = 1 then 0.1 else 0.9) :

(i = 1⇒ beep()
∑
•

j:{∗}

1.0: B()) + (i 6= 1⇒ B())

B. Syntactic sugar

For notational ease we define some syntactic sugar. Let X
be a process name, a an action, p, q two process terms, c a
condition, and t an expression vector. Then, we write X as
an abbreviation of X(), and a for a(). Moreover,

p / c . q
def
= (c⇒ p) + (¬c⇒ q)

a(t) · p def
= a(t)

∑
•
x:{∗} 1.0: p

a(t) Ud:D c⇒ p
def
= a(t)

∑
•
d:D f : p

where x does not occur in p and f is the function
‘if c then 1

|{e∈D|c[d:=e]}| else 0’. Note that Ud:D c ⇒ p is
the uniform choice among a set, choosing only from its
elements that fulfil a certain condition c.

For finite probabilistic sums that do not depend on data,

a(t)(u1 : p1 ⊕ u2 : p2 ⊕ · · · ⊕ un : pn)

is used to abbreviate a(t)
∑
•
x:{1,...,n} f : p with f [x := i] =

ui and p[x := i] = pi for all 1 ≤ i ≤ n.
Example 3. The process equation of Example 2 can now be
represented as follows:

B = τ
∑
•
d:D

1
|D| : send(d)(0.1: beep ·B ⊕ 0.9: B)

Example 4. Let X continuously send an arbitrary element of
some type D that is contained in a finite set SetD, according
to a uniform distribution. It is represented by

X(s : SetD) = τ U
d:D

contains(s, d)⇒ send(d) ·X(s),

where contains(s, d) is assumed to hold when s contains d.

IV. A LINEAR FORMAT FOR PRCRL

A. The LPE and LPPE formats

In the non-probabilistic setting, LPEs are given by the
following equation [16]:

X(g : G) =
∑
i∈I

∑
di:Di

ci ⇒ ai(bi) ·X(ni),

where G is a type for state vectors (containing the global
variables), I a set of summand indices, and Di a type
for local variable vectors for summand i. The summations

215

represent nondeterministic choices; the outer between dif-
ferent summands, the inner between different possibilities
for the local variables. Furthermore, each summand i has
an action ai and three expressions that may depend on the
state g and the local variables di: the enabling condition ci,
action-parameter vector bi, and next-state vector ni.
Example 5. Consider a system consisting of two buffers,
B1 and B2. Buffer B1 reads a message of type D from
the environment, and sends it synchronously to B2. Then,
B2 writes the message. The following LPE has exactly this
behaviour when initialised with a = 1 and b = 1.

X(a : {1, 2}, b : {1, 2}, x : D, y : D) =∑
d:D a = 1 ⇒ read(d) ·X(2, b, d, y) (1)

+ a = 2∧ b = 1 ⇒ comm(x) ·X(1, 2, x, x) (2)

+ b = 2 ⇒ write(y) ·X(a, 1, x, y) (3)

Note that the first summand models B1’s reading, the second
the inter-buffer communication, and the third B2’s writing.
The global variables a and b are used as program counters
for B1 and B2, and x and y for their local memory.

As our intention is to develop a linear format for prCRL
that can easily be mapped onto PAs, it should follow the
concept of nondeterministically choosing an action and prob-
abilistically determining the next state. Therefore, a natural
adaptation is the format given by the following definition.

Definition 3. An LPPE (linear probabilistic process equa-
tion) is a prCRL specification consisting of one process
equation, of the following format:

X(g : G) =
∑
i∈I

∑
di:Di

ci ⇒ ai(bi)
∑
•

ei:Ei

fi : X(ni)

Compared to the LPE we added a probabilistic choice over
an additional vector of local variables ei. The corresponding
probability distribution expression fi, as well as the next-
state vector ni, can now also depend on ei. An initial
process X(v) is represented by its initial vector v, and g0

is used to refer to the initial value of global variable g.

B. Operational semantics
As the behaviour of an LPPE is uniquely determined by its

global variables, the states of the underlying PA are precisely
all vectors g′ ∈ G (with the initial vector as initial state).
From the SOS rules it follows that for all g′ ∈ G, there is a
transition g′

a(q)→ µ if and only if for at least one summand i
there is a choice of local variables d′i ∈Di such that

ci(g
′,d′i)∧ ai(bi(g′,d′i)) = a(q)∧∀e′i ∈ Ei .

µ(ni(g
′,d′i, e

′
i)) =

∑
e′′
i ∈Ei

ni(g
′,d′

i,e
′
i)=ni(g

′,d′
i,e

′′
i)

fi(g
′,d′i, e

′′
i),

where for ci and bi the notation (g′,d′i) is used to abbreviate
[g := g′,di := d′i], and for ni and fi we use (g′,d′i, e

′
i) to

abbreviate [g := g′,di := d′i, ei := e′i].

Example 6. Consider a system that continuously sends a
random element of a finite type D. It is represented by

X = τ
∑
•
d:D

1
|D| : send(d) ·X,

and is easily seen to be isomorphic to the following LPPE
when initialised with pc = 1. The initial value of d can be
chosen arbitrarily, as it will be overwritten before used.

X(pc : {1, 2}, d : D) =

pc = 1⇒ τ
∑
•
d:D

1
|D| : X(2, d)

+ pc = 2⇒ send(d)
∑
•

y:{∗}

1.0: X(1, d0)

Obviously, the earlier defined syntactic sugar could also
be used on LPPEs, writing send(d) ·X(1, d0) in the second
summand. However, as linearisation will be defined only on
the basic operators, we will often keep writing the full form.

V. LINEARISATION

Linearisation of a prCRL specification is performed in
two steps: (1) Every right-hand side becomes a summation
of process terms, each of which contains exactly one action;
this is the intermediate regular form (IRF). This step is
performed by Algorithm 1, which uses Algorithms 2 and 3.
(2) An LPPE is created based on the IRF, using Algorithm 4.
The algorithms are shown in detail on the following pages.
We first illustrate both steps based on two examples.

Example 7. Consider the specification X = a · b · c ·X . We
transform X into the strongly bisimilar (in this case even
isomorphic) IRF {X1 = a ·X2, X2 = b ·X3, X3 = c ·X1}
(with initial process X1). Now, an isomorphic LPPE is
constructed by introducing a program counter pc that keeps
track of the subprocess that is currently active, as below. It
is easy to see that Y (1) generates the same state space as X .

Y (pc : {1, 2, 3}) = pc = 1⇒ a · Y (2)

+ pc = 2⇒ b · Y (3)

+ pc = 3⇒ c · Y (1)

Example 8. Now consider the following specification, con-
sisting of two process equations with parameters. Let B(d′)
be the initial process for some d′ ∈ D.

B(d : D) =

τ
∑
•
e:E

1
|E| : send(d+ e)

∑
•

i:{1,2}

(if i = 1 then 0.1 else 0.9) :

((i = 1⇒ crash
∑
•

j:{∗}

1.0: B(d)) + (i 6= 1⇒ C(d+ 1)))

C(f : D) =

write(f2)
∑
•

k:{∗}

1.0:
∑
g:D

write(f + g)
∑
•
l:{∗}

1.0: B(f + g)

216

Again we introduce a new process for each subprocess. For
brevity we use (p) for (d : D, f : D, e : E, i : {1, 2}, g : D).
The initial process is X1(d′, f0, e0, i0, g0), where f0, e0, i0,
and g0 can be chosen arbitrarily.

X1(p) = τ
∑
•
e:E

1
|E| : X2(d, f0, e, i0, g0)

X2(p) = send(d+ e)
∑
•

i:{1,2}

(if i = 1 then 0.1 else 0.9) :

X3(d, f0, e0, i, g0)

X3(p) = (i = 1⇒ crash
∑
•

j:{∗}

1.0: X1(d, f0, e0, i0, g0))

+ (i 6= 1⇒ write((d+ 1)2)
∑
•

k:{∗}

1.0:

X4(d′, d+ 1, e0, i0, g0))

X4(p) =
∑
g:D

write(f + g)
∑
•
l:{∗}

1.0: X1(f + g, f0, e0, i0, g0)

Note that we added global variables to remember the
values of variables that were bound by a nondeterministic or
probabilistic summation. As the index variables j, k and l are
never used, they are not remembered. We also reset variables
that are not syntactically used in their scope to keep the state
space minimal.

Again, the LPPE is obtained by introducing a program
counter. The initial vector is (1, d′, f0, e0, i0, g0), where
f0, e0, i0, and g0 can again be chosen arbitrarily.

X(pc : {1, 2, 3, 4}, d : D, f : D, e : E, i : {1, 2}, g : D) =

pc = 1⇒ τ
∑
•
e:E

1
|E| : X(2, d, f0, e, i0, g0)

+ pc = 2⇒ send(d+ e)
∑
•

i:{1,2}

(if i = 1 then 0.1 else 0.9) :

X(3, d, f0, e0, i, g0)

+ pc = 3∧ i = 1⇒ crash
∑
•

j:{∗}

1.0: X(1, d, f0, e0, i0, g0)

+ pc = 3∧ i 6= 1⇒

write((d+ 1)2)
∑
•

k:{∗}

1.0: X(4, d′, d+ 1, e0, i0, g0)

+
∑
g:D

pc = 4⇒

write(f + g)
∑
•
l:{∗}

1.0: X(1, f + g, f0, e0, i0, g0)

A. Transforming from prCRL to IRF
We now formally define the IRF, and then discuss the

transformation from prCRL to IRF in more detail.

Definition 4. A process term is in IRF if it adheres to the
following grammar:

p ::= c⇒ p | p+ p |
∑
x:D

p | a(t)
∑
•
x:D

f : Y (t)

Note that in IRF every probabilistic sum goes to a process
instantiation, and that process instantiations do not occur in
any other way. A process equation is in IRF if its right-
hand side is in IRF, and a specification is in IRF if all its

process equations are in IRF and all its processes have the
same global variables. For every specification P with initial
process X(v) there exists a specification P ′ in IRF with
initial process X ′(v′) such that X(v) ≈ X ′(v′) (as we
provide an algorithm to find it). However, it is not hard to see
that P ′ is not unique. Also, not necessarily X(v) ≡ X ′(v′)
(as we will show in Example 10).

Clearly, every specification P representing a finite PA
can be transformed to an IRF describing an isomorphic
PA: just define a data type S with an element si for
every state of the PA underlying P , and create a pro-
cess X(s : S) consisting of a summation of terms of the
form s = si ⇒ a(t)(p1 : s1⊕ p2 : s2 . . .⊕ pn : sn) (one for

each transition si
a(t)→ µ, where µ(s1) = p1, µ(s2) =

p2, . . . , µ(sn) = pn). However, this transformation com-
pletely defeats its purpose, as the whole idea behind the
LPPE is to apply reductions before having to compute all
states of the original specification.

Overview of the transformation to IRF.
Algorithm 1 transforms a specification P with initial

process X1(v) to a specification P ′ with initial process
X ′1(v′) such that X1(v) ≈ X ′1(v′) and P ′ is in IRF. It
requires that all global and local variables of P have unique
names (which is easily achieved by α-conversion). Three
important variables are used: (1) done is a set of process
equations that are already in IRF; (2) toTransform is a set of
process equations that still have to be transformed to IRF;

Algorithm 1: Transforming a specification to IRF

Input:
• A prCRL specification P = {X1(g : G) = p1, . . . ,
Xn(gn : Gn) = pn} with unique variable names, and an initial
vector v for X1. (We use gji to denote the jth element of gi.)

Output:
• A prCRL specification {X′1(g : G, g′ : G

′) = p′1, . . . ,
X′k(g : G, g′ : G

′) = p′k} in IRF, and an initial vector v′
such that X′1(v

′) ≈ X1(v).

Initialisation
1 newPars := [(g12 : G1

2), (g
2
2 : G2

2), . . . , (g
1
3 : G1

3), (g
2
3 : G2

3), . . . ,
(g1n : G1

n), (g
2
n : G2

n), . . .] + n
where n = [(v,D) | ∃i . pi binds a variable v of type D via

a nondeterministic or probabilistic sum
and syntactically uses v within its scope]

2 pars := [(g11 : G1
1), (g

2
1 : G2

1), . . .] + newPars
3 v′ := v+[D0 | (v,D)← newPars, D0 is any constant of type D]
4 done := ∅
5 toTransform := {X′1(pars) = p1}
6 bindings := {X′1(pars) = p1}

Construction
7 while toTransform 6= ∅ do
8 Choose an arbitrary equation (X′i(pars) = pi) ∈ toTransform
9 (p′i, newProcs) := transform(pi, pars, bindings, P,v′)

10 done := done ∪ {X′i(pars) = p′i}
11 bindings := bindings ∪ newProcs
12 toTransform := (toTransform ∪ newProcs) \ {X′i(pars) = pi}
13 return (done,v′)

217

Algorithm 2: Transforming process terms to IRF

Input:
• A process term p, a list pars of typed global variables, a set

bindings of process terms in P that have already been mapped
to a new process, a specification P , and a new initial vector v′.

Output:
• The IRF for p and the process equations to add to toTransform.

transform(p, pars, bindings, P,v′) =
1 case p = a(t)

∑
•
x:D f : q

2 (q′, actualPars) := normalForm(q, pars, P,v′)
3 if ∃j . (X′j(pars) = q′) ∈ bindings then
4 return (a(t)

∑
•
x:D f : X

′
j(actualPars), ∅)

5 else
6 k := |bindings|+ 1
7 return (a(t)

∑
•
x:D f : X

′
k(actualPars), {(X′k(pars) = q′)})

8 case p = c⇒ q
9 (newRHS, newProcs) := transform(q, pars, bindings, P,v′)

10 return (c⇒ newRHS, newProcs)
11 case p = q1 + q2
12 (newRHS1, newProcs1) := transform(q1, pars, bindings, P,v′)
13 (newRHS2, newProcs2) := transform(q2, pars, bindings ∪

newProcs1, P,v′)
14 return (newRHS1 + newRHS2, newProcs1 ∪ newProcs2)
15 case p = Y (t)
16 (newRHS, newProcs) := transform(RHS(Y), pars, bindings, P,v′)
17 newRHS’ = newRHS, with all free variables substituted by the

value provided for them by t
18 return (newRHS’, newProcs)
19 case p =

∑
x:D q

20 (newRHS, newProcs) := transform(q, pars, bindings, P,v′)
21 return (

∑
x:D newRHS, newProcs)

Algorithm 3: Normalising process terms

Input:
• A process term p, a list pars of typed global variables, a prCRL

specification P , and a new initial vector v′.
Output:
• The normal form p′ of p, and the actual parameters needed to

supply to a process which has right-hand side p′ to make its
behaviour strongly probabilistic bisimilar to p.

normalForm(p, pars, P,v′) =
1 case p = Y (t)
2 p′ := RHS(Y)
3 actualPars := [n(v) | (v,D)← pars]

where

n(v) =

 v0 if v is no global variable of Y in P ,
(v0 can be found by inspecting pars and v′)

t(i) if v is the ith global variable of Y in P
4 return (p′, actualPars)
5 case otherwise
6 return (p, [n′(v) | (v,D)← pars])

where n′(v) = v if v occurs syntactically in p,
otherwise it is v’s initial value v0

(3) bindings is a set of process equations X ′i(pars) = pi
such that X ′i(pars) is the process in done ∪ toTransform
representing the process term pi of the original specification.

Initially, done is empty and we bind the right-hand side of
the initial process to X ′1 (and add this equation to toTrans-
form). Also, pars becomes the list of all variables occurring

in P as global variables or in a summation (and syntactically
used after being bound). The new initial vector is constructed
by appending dummy values to the original initial vector
for all newly added parameters. (We use Haskell-like list
comprehension to denote this.) Then, basically we repeatedly
take a process equation X ′i(pars) = pi from toTransform,
transform pi to a strongly probabilistic bisimilar IRF p′i
using Algorithm 2, add the process X ′i(pars) = p′i to done,
and remove X ′i(pars) = pi from toTransform. The trans-
formation may have introduced new processes, which are
added to toTransform, and bindings is updated accordingly.

Transforming single process terms to IRF.
Algorithm 2 transforms process terms to IRF recursively

by means of a case distinction over the structure of the terms.
The base case is a probabilistic choice a(t)

∑
•
x:D f : q.

The corresponding IRF is a(t)
∑
•
x:D f : X ′i(actualPars),

where X ′i is either the process name already mapped to q
(as stored in bindings), or a new process name when there
did not yet exist such a process. More precisely, instead
of q we use its normal form (computed by Algorithm 3);
when q is a process instantiation Y (t), its normal form
is the right-hand side of Y , otherwise it is just q. When
q is not a process instantiation, the actual parameters for
X ′i are just the global variables (possibly resetting variables
that are not used in q). When q = Y (v1, v2, . . . , vn), all
global variables are reset, except the ones corresponding to
the original global variables of Y ; for them v1, v2, . . . , vn
are used. Newly created processes are added to toTransform.

For a summation q1 + q2, the IRF is q′1 + q′2 (with q′i
an IRF of qi). For the condition c ⇒ q1 it is c ⇒ q′1, and
for
∑
x:D q1 it is

∑
x:D q

′
1. Finally, the IRF for Y (t) is the

IRF for the right-hand side of Y , where the global variables
of Y occurring in this term have been substituted by the
expressions given by t.

Example 9. We linearise two example specifications:
P1 = {X1 = a · b · c ·X1 + c ·X2, X2 = a · b · c ·X1}, and
P2 = {X3(d : D) =

∑
e:D a(d+ e) · c(e) ·X3(5)} (with

initial processes X1 and X3(d′)). Tables II and III show
done, toTransform and bindings at line 7 of Algorithm 1
for every iteration. As both done and bindings only grow,
we just list their additions. For layout purposes, we omit
the parameters (d : D, e : D) of every X ′′i in Table III. The
initial processes are X ′1 and X ′′1 (d′, e0) for some e0 ∈ D.

Theorem 1. Let P = {X1(g : G) = p1, . . . ,
Xn(gn : Gn) = pn} be a prCRL specification with initial
vector v for X1. Given these inputs Algorithm 1 terminates,
and the specification P ′ = {X ′1(g : G, g

′ : G
′
) = p′1, . . . ,

X ′k(g : G, g
′ : G

′
) = p′k} and initial vector v′ it returns

are such that X ′1(v′) in P ′ is strongly probabilistic bisimilar
to X1(v) in P . Also, P ′ is in IRF.

The following example shows that Algorithm 1 does not
always compute an isomorphic specification.

218

Table II
TRANSFORMING {X1 = a · b · c ·X1 + c ·X2, X2 = a · b · c ·X1} WITH INITIAL PROCESS X1 TO IRF.

done toTransform bindings
0 ∅ X′1 = a · b · c ·X1 + c ·X2 X′1 = a · b · c ·X1 + c ·X2

1 X′1 = a ·X′2 + c ·X′3 X′2 = b · c ·X1, X′3 = a · b · c ·X1 X′2 = b · c ·X1, X′3 = a · b · c ·X1

2 X′2 = b ·X′4 X′3 = a · b · c ·X1, X′4 = c ·X1 X′4 = c ·X1

3 X′3 = a ·X′2 X′4 = c ·X1

4 X′4 = c ·X′1 ∅

Table III
TRANSFORMING {X3(d : D) =

∑
e:D a(d+ e) · c(e) ·X3(5)} WITH INITIAL PROCESS X3(d′) TO IRF.

done toTransform bindings
0 ∅ X′′1 =

∑
e:D a(d+ e) · c(e) ·X3(5) X′′1 =

∑
e:D a(d+ e) · c(e) ·X3(5)

1 X′′1 =
∑
e:D a(d+ e) ·X′′2 (d′, e) X′′2 = c(e) ·X3(5) X′′2 = c(e) ·X3(5)

2 X′′2 = c(e) ·X′′1 (5, e0) ∅

Example 10. Let X =
∑
d:D a(d) · b(f(d)) · X , with

f(d) = 0 for all d ∈ D. Then, our procedure will
yield the specification {X ′1(d : D) =

∑
d:D a(d) · X ′2(d),

X ′2(d : D) = b(f(d)) ·X ′1(d0)} with initial process X ′1(d0)
for an arbitrary d0 ∈ D. Note that the number of states of
X ′1(d0) is |D|+ 1 for any d0 ∈ D. However, the state space
of X only consists of the two states X and b(0) ·X .

B. Transforming from IRF to LPPE

Based on a specification P ′ in IRF, Algorithm 4 con-
structs an LPPE X . The global variables of X are a newly
introduced program counter pc and all global variables
of P ′. To construct the summands for X , the algorithm
ranges over the process equations in P ′. For each equa-

Algorithm 4: Constructing an LPPE from an IRF

Input:
• A prCRL specification P ′ = {X′1(g : G) = p′1, . . . ,
X′k(g : G) = p′k} in IRF (without variable pc).

Output:
• An LPPE X(pc : {1, . . . , k}, g : G) such that
X′1(v) ≡ X(1,v) for all v ∈ G.

Construction
1 S = ∅
2 forall (X′i(g : G) = p′i) ∈ P ′ do
3 S := S ∪ makeSummands(p′i, i)
4 return X(pc : {1, . . . , k}, g : G) =

∑
s∈S s

where
makeSummands(p, i) =

5 case p = a(t)
∑
•
x:D f : X

′
j(e1, . . . , ek)

6 return {pc = i⇒ a(t)
∑
•
x:D f : X(j, e1, . . . , ek)}

7 case p = c⇒ q
8 return {c⇒ q′ | q′ ∈ makeSummands(q, i)}
9 case p = q1 + q2

10 return makeSummands(q1, i) ∪ makeSummands(q2, i)
11 case p =

∑
x:D q

12 return {
∑
x:D q

′ | q′ ∈ makeSummands(q, i)}

tion X ′i(g : G) = a(t)
∑
•
x:D f : X ′j(e1, . . . , ek), a summand

pc = i⇒ a(t)
∑
•
x:D f : X(j, e1, . . . , ek) is constructed. For

an equation X ′i(g : G) = q1+q2 the union of the summands
produced by X ′i(g : G) = q1 and X ′i(g : G) = q2 is
taken. For X ′i(g : G) = c ⇒ q the condition c is prefixed
before the summands produced by X ′i(g : G) = q; the
nondeterministic sum is handled similarly.

To be precise, an actual LPPE is only obtained after
a few manipulation of the summands obtained this way.
The nondeterministic sums should still be moved to the
front, and separate nondeterministic sums and separate con-
ditions should be merged (using vectors and conjunctions,
respectively). This does not change behaviour because of the
assumed uniqueness of variable names.

Theorem 2. Let P ′ = {X ′1(g : G) = p′1, . . . , X
′
k(g : G) =

p′k} be a specification in IRF, and X(pc : {1, . . . , k}, g : G)
the LPPE obtained by applying Algorithm 4 to P ′. Then,
X ′1(v) ≡ X(1,v) for every v ∈ G. Also, X is an LPPE
(after, within each summand, moving the nondeterministic
sums to the beginning and merging separate nondeterminis-
tic sums and separate conditions).

Proposition 2. The time complexity of linearising a spec-
ification P is in O(n3), where n =

∑
(Xi(gi:Gi)=pi)∈P

size(gi) + size(pi). The LPPE size is in O(n2).

Although the transformation to LPPE increases the size
of the specification, it facilitates optimisations to reduce the
state space (which is worst-case in O(2n)).

Example 11. Looking at the IRFs obtained in Example 9,
it follows that X ′1 ≡ X(1) where X(pc : {1, 2, 3, 4}) =
(pc = 1 ⇒ a ·X(2)) + (pc = 1 ⇒ c ·X(3)) + (pc = 2 ⇒
b ·X(4)) + (pc = 3⇒ a ·X(2)) + (pc = 4⇒ c ·X(1)).

Also, X ′′1 (d′, e0) ≡ X(1, d′, e0) where X(pc : {1, 2}, d :
D, e : D) = (

∑
e:D pc = 1⇒ a(d+e) ·X(2, d′, e))+(pc =

2⇒ c(e) ·X(1, 5, e0)).

219

Table IV
SOS RULES FOR PARALLEL PRCRL.

PAR-L
p

α−→ µ

p || q α−→ µ′
where ∀p′ . µ′(p′ || q) = µ(p′) PAR-R

q
α−→ µ

p || q α−→ µ′
where ∀q′ . µ′(p || q′) = µ(q′)

PAR-COM
p

a(t)−→ µ q
b(t)−→ µ′

p || q c(t)−→ µ′′
if γ(a, b) = c, where ∀p′, q′ . µ′′(p′ || q′) = µ(p′) · µ′(q′)

HIDE-T
p

a(t)−→ µ

τH(p)
τ−→ τH(µ)

if a ∈ H HIDE-F
p

a(t)−→ µ

τH(p)
a(t)−→ τH(µ)

if a 6∈ H

RENAME
p

a(t)−→ µ

ρR(p)
R(a)(t)−→ ρR(µ)

ENCAP-F
p

a(t)−→ µ

∂E(p)
a(t)−→ ∂E(µ)

if a 6∈ E

VI. PARALLEL COMPOSITION

Using prCRL processes as basic building blocks, we
support the modular construction of large systems by in-
troducing top-level parallelism, encapsulation, hiding, and
renaming. The resulting language is called parallel prCRL.

Definition 5. A process term in parallel prCRL is any term
that can be generated according to the following grammar.

q ::= p | q || q | ∂E(q) | τH(q) | ρR(q)

Here, p is a prCRL process, E,H ⊆ Act, and R : Act →
Act. A parallel prCRL process equation is of the form
X(g : G) = q, and a parallel prCRL specification is a set
of such equations. These equations and specifications are
under the same restrictions as their prCRL counterparts.

In a parallel prCRL process term, q1 || q2 is parallel
composition. Furthermore, ∂E(q) encapsulates the actions
in E, τH(q) hides the actions in H (renaming them
to τ and removing their parameters), and ρR(q) renames
actions using R. Parallel processes by default interleave
all their actions. However, we assume a partial func-
tion γ : Act× Act→ Act that specifies which actions may
communicate; more precisely, γ(a, b) = c denotes that a
and b may communicate, resulting in the action c. The
SOS rules for parallel prCRL are shown in Table IV. For
any probability distribution µ, we denote by τH(µ) the
probability distribution µ′ such that ∀p . µ′(τH(p)) = µ(p).
Similarly, we use ρR(µ) and ∂E(µ).

A. Linearisation of parallel processes

The LPPE format allows processes to be put in par-
allel very easily. Although the LPPE size is worst-case
exponential in the number of parallel processes (when all
summands have different actions and all these actions can
communicate), in practice we see only linear growth (since
often only a few actions communicate). Given the LPPEs

X(g : G) =
∑
i∈I

∑
di:Di

ci ⇒ ai(bi)
∑
•

ei:Ei

fi : X(ni),

Y (g′ : G′) =
∑
i∈I′

∑
d′
i:D

′
i

c′i ⇒ a′i(b
′
i)
∑
•

e′
i:E

′
i

f ′i : Y (n′i),

where all global and local variables are assumed to be
unique, the product Z(g : G, g′ : G′) = X(g) ||Y (g′) is
constructed as follows, based on the construction presented
by Usenko for traditional LPEs [16]. Note that the first set
of summands represents X doing a transition independent
from Y , and that the second set of summands represents Y
doing a transition independent from X . The third set corre-
sponds to their communications.

Z(g : G, g′ : G′) =
∑
i∈I

∑
di:Di

ci ⇒ ai(bi)
∑
•

ei:Ei

fi : Z(ni, g
′)

+
∑
i∈I′

∑
d′
i:D

′
i

c′i ⇒ a′i(b
′
i)
∑
•

e′
i:E

′
i

f ′i : Z(g,n′i)

+
∑

(k,l)∈IγI′

∑
(dk,d′

l):Dk×D′
l

ck ∧ c′l ∧ bk = b′l ⇒

γ(ak, a
′
l)(bk)

∑
•

(ek,e′l):Ek×E′
l

fk · f ′l : Z(nk,n
′
l)

In this definition, IγI ′ is the set of all combinations of sum-
mands (k, l) ∈ I× I ′ such that the action ak of summand k
and the action a′l of summand l can communicate. Formally,
IγI ′ = {(k, l) ∈ I × I ′ | (ak, a′l) ∈ domain(γ)}.

Proposition 3. For all v ∈ G,v′ ∈ G′, it holds that
Z(v,v′) ≡ X(v) ||Y (v′).

B. Linearisation of hiding, encapsulation and renaming

For hiding, renaming, and encapsulation, linearisation is
quite straightforward. For the LPPE

X(g : G) =
∑
i∈I

∑
di:Di

ci ⇒ ai(bi)
∑
•

ei:Ei

fi : X(ni),

let the LPPEs U(g), V (g), and W (g), for τH(X(g)),
ρR(X(g)), and ∂E(X(g)), respectively, be given by

U(g : G) =
∑
i∈I

∑
di:Di

ci ⇒ a′i(b
′
i)
∑
•

ei:Ei

fi : U(ni),

220

V (g : G) =
∑
i∈I

∑
di:Di

ci ⇒ a′′i (bi)
∑
•

ei:Ei

fi : V (ni),

W (g : G) =
∑
i∈I′

∑
di:Di

ci ⇒ ai(bi)
∑
•

ei:Ei

fi : W (ni),

where

a′i =

{
τ if ai ∈ H
ai otherwise , bi

′ =

{
[] if ai ∈ H
bi otherwise

a′′i = R(ai) , I ′ = {i ∈ I | ai 6∈ E}.

Proposition 4. For all v ∈ G, U(v) ≡ τH(X(v)),
V (v) ≡ ρR(X(v)), and W (v) ≡ ∂E(X(v)).

VII. IMPLEMENTATION AND CASE STUDY

We developed a Haskell implementation of all procedures
for linearisation of prCRL specifications, parallel compo-
sition, hiding, encapsulation and renaming1. As Haskell
is a functional language, the implementations are almost
identical to their mathematical representations in this paper.
To test the correctness of the procedures, we used the
implementation to linearise all examples in this paper, and
indeed found exactly the LPPEs we expected.

To illustrate the possible reductions for LPPEs, we model
a protocol, inspired by the various leader election protocols
that can be found in literature (e.g., Itai-Rodeh [30]), in
prCRL. On this model we apply one reduction manually,
and several more automatically. Future work will focus on
defining and studying more reductions in detail.

We consider a system consisting of two nodes, deciding
on a leader by rolling two dice and comparing the results.
When both roll the same number, the experiment is repeated.
Otherwise, the node that rolled highest wins. The system can
be modelled by the prCRL specification shown in Figure 2.
We assume that Die is a data type consisting of the numbers
from 1 to 6, and that Id is a data type consisting of the
identifiers one and two. The function other is assumed to
provide the identifier different from its argument.

Each component has been given an identifier for reference
during communication, and consists of a passive thread P
and an active thread A. The passive thread waits to receive
what the other component has rolled, and then provides the
active thread an opportunity to obtain this result. The active
thread first rolls a die, and sends the result to the other
component (communicating via the comm action). Then it
tries to read the result of the other component through
the passive process (or blocks until this result has been
received). Based on the results, either the processes start
over, or they declare their victory or loss.

Linearising this specification we obtain a process with 18
parameters and 14 summands, shown in [27]. Computing
the state space we obtain 3763 states and 6158 transitions.
Due to the uniform linear format, we can now apply several

1The implementation can be found at http://fmt.cs.utwente.nl/tools/prcrl.

P (id : Id, val : Die, set : Bool) =

set = false⇒
∑
d:Die

receive(id, other(id), d) · P (id, d, true)

+ set = true⇒ getVal(val).P (id, val, false)

A(id : Id) =

roll(id)
∑
•
d:Die

1
6
: send(other(id), id, d) ·

∑
e:Die

readVal(e).(
(d = e⇒ A(id))

+ (d > e⇒ leader(id) ·A(id))
+ (e > d⇒ follower(id) ·A(id))

)
C(id : Id) = ∂getVal,readVal(P (id, 1, false) ||A(id))

S = ∂send,receive(C(one) ||C(two))

γ(receive, send) = comm γ(getVal, readVal) = checkVal

Figure 2. A prCRL model of a leader election protocol.

classical reduction techniques to the result. Here we will
demonstrate the applicability of four such techniques using
one of the summands as an example:∑

e21:Die pc21 = 3∧ pc11 = 1∧ set11∧ val11 = e21⇒
checkVal(val11)

∑
•

(k1,k2):{∗}×{∗} multiply(1.0, 1.0) :

Z(1, id11, val11, false, 1, 4, id21, d21, e21,

pc12, id12, val12, set12, d12, pc22, id22, d22, e22)

Constant elimination [19]. Syntactic analysis of the LPPE
revealed that pc11, pc12, id11, id12, id21, id22, d11 and d12
never get any value other than their initial value. Therefore,
these parameters can be removed and everywhere they occur
their initial value is substituted for them.

Summation elimination [16]. The summand at hand
ranges e21 over Die, but the condition requires it to be
equal to val11. Therefore, the summation can be removed
and occurrences of e21 substituted by val11. This way, all
summations of the LPPE can be removed.

Data evaluation / syntactic clean-up. After constant elim-
ination, the condition pc11 = 1 has become 1 = 1 and
can therefore be eliminated. Also, the multiplication can be
evaluated to 1.0, and the Cartesian product can be simplified.

Liveness analysis [20]. Using the methods of [20] we
found that after executing the summand at hand val11 is
always first reset before used again. Therefore, we can also
immediately reset it after this summand, thereby reducing
the state space. This way, two resets have been added.

Combining all these methods to the complete LPPE (the
first three automatically, the last one manually), a strongly
probabilistic bisimilar LPPE was obtained (see [27] for the
details). The summand discussed above became:

pc21 = 3∧ set11⇒ checkVal(val11)
∑
•
k:{∗} 1.0:

Z(1, false, 4, d21, val11, val12, set12, pc22, d22, e22)

Computing the state space of the reduced LPPE we obtained
1693 states (-55%) and 2438 transitions (-60%).

221

VIII. CONCLUSIONS AND FUTURE WORK

This paper introduced a linear process algebraic format
for systems incorporating both nondeterministic and prob-
abilistic choice. The key ingredients are: (1) the combined
treatment of data and data-dependent probabilistic choice in
a fully symbolic manner; (2) a symbolic transformation of
probabilistic process algebra terms with data into this linear
format, while preserving strong probabilistic bisimulation.
The linearisation is the first essential step towards the
symbolic minimisation of probabilistic state spaces, as well
as the analysis of parameterised probabilistic protocols. The
results show that the treatment of probabilities is simple and
elegant, and rather orthogonal to the traditional setting [16].
Future work will concentrate on branching bisimulation
preserving symbolic minimisation techniques such as conflu-
ence reduction [26], and on applying proof techniques such
as the cones and foci method to LPPEs.

REFERENCES

[1] J. Groote and A. Ponse, “The syntax and semantics of
µCRL,” in Proc. of Algebra of Communicating Processes,
ser. Workshops in Computing, 1995, pp. 26–62.

[2] http://www.prismmodelchecker.org/.
[3] C. Baier, F. Ciesinski, and M. Größer, “PROBMELA: a mod-

eling language for communicating probabilistic processes,” in
Proc. of the 2nd ACM/IEEE Int. Conf. on Formal Methods
and Models for Co-Design (MEMOCODE), 2004, pp. 57–66.

[4] H. Bohnenkamp, P. D’Argenio, H. Hermanns, and J.-P.
Katoen, “MODEST: A compositional modeling formalism
for hard and softly timed systems,” IEEE Transactions of
Software Engineering, vol. 32, no. 10, pp. 812–830, 2006.

[5] P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen, “Reach-
ability analysis of probabilistic systems by successive re-
finements,” in Proc. of the Joint Int. Workshop on Process
Algebra and Probabilistic Methods, Performance Modeling
and Verification (PAPM-PROBMIV), ser. LNCS, vol. 2165,
2001, pp. 39–56.

[6] L. de Alfaro and P. Roy, “Magnifying-lens abstraction for
Markov decision processes,” in Proc. of the 19th Int. Conf.
on Computer Aided Verification (CAV), ser. LNCS, vol. 4590,
2007, pp. 325–338.

[7] T. Henzinger, M. Mateescu, and V. Wolf, “Sliding window
abstraction for infinite Markov chains,” in Proc. of the 21st
Int. Conf. on Computer Aided Verification (CAV), ser. LNCS,
vol. 5643, 2009, pp. 337–352.

[8] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf, “Three-
valued abstraction for continuous-time Markov chains,” in
Proc. of the 19th Int. Conf. on Computer Aided Verification
(CAV), ser. LNCS, vol. 4590, 2007, pp. 311–324.

[9] M. Kwiatkowska, G. Norman, and D. Parker, “Game-based
abstraction for Markov decision processes,” in Proc. of the
3rd Int. Conf. on Quantitative Evaluation of Systems (QEST),
2006, pp. 157–166.

[10] H. Hermanns, B. Wachter, and L. Zhang, “Probabilistic CE-
GAR,” in Proc. of the 20th Int. Conf. on Computer Aided
Verification (CAV), ser. LNCS, vol. 5123, 2008, pp. 162–175.

[11] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker,
“Abstraction refinement for probabilistic software,” in Proc.
of the 19th Int. Conf. on Verification, Model Checking, and
Abstract Interpretation (VMCAI), ser. LNCS, vol. 5403, 2009,
pp. 182–197.

[12] J. Hurd, A. McIver, and C. Morgan, “Probabilistic guarded
commands mechanized in HOL,” Theoretical Computer Sci-
ence, vol. 346, no. 1, pp. 96–112, 2005.

[13] M. Bezem and J. Groote, “Invariants in process algebra with
data,” in Proc. of the 5th Int. Conf. on Concurrency Theory
(CONCUR), ser. LNCS, vol. 836, 1994, pp. 401–416.

[14] K. Larsen and A. Skou, “Bisimulation through probabilistic
testing,” Information and Computation, vol. 94, no. 1, pp.
1–28, 1991.

[15] D. Bosscher and A. Ponse, “Translating a process algebra
with symbolic data values to linear format,” in Proc. of the
1st Workshop on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), ser. BRICS Notes Series,
vol. NS-95-2, 1995, pp. 119–130.

[16] Y. Usenko, “Linearization in µCRL,” Ph.D. dissertation, Eind-
hoven University of Technology, 2002.

[17] J. Groote and J. Springintveld, “Focus points and convergent
process operators: a proof strategy for protocol verification,”
Journal of Logic and Algebraic Programming, vol. 49, no.
1-2, pp. 31–60, 2001.

[18] W. Fokkink, J. Pang, and J. van de Pol, “Cones and foci:
A mechanical framework for protocol verification,” Formal
Methods in System Design, vol. 29, no. 1, pp. 1–31, 2006.

[19] J. Groote and B. Lisser, “Computer assisted manipulation
of algebraic process specifications,” CWI, Tech. Rep. SEN-
R0117, 2001.

[20] J. van de Pol and M. Timmer, “State space reduction of linear
processes using control flow reconstruction,” in Proc. of the
7th Int. Symp. on Automated Technology for Verification and
Analysis (ATVA), ser. LNCS, vol. 5799, 2009, pp. 54–68.

[21] M. Espada and J. van de Pol, “An abstract interpretation
toolkit for µCRL,” Formal Methods in System Design, vol. 30,
no. 3, pp. 249–273, 2007.

[22] S. Blom, B. Lisser, J. van de Pol, and M. Weber, “A database
approach to distributed state-space generation,” Journal of
Logic and Computation, 2009, Advance Access, March 5.

[23] S. Blom and J. van de Pol, “Symbolic reachability for process
algebras with recursive data types,” in Proc. of the 5th Int.
Colloquium on Theoretical Aspects of Computing (ICTAC),
ser. LNCS, vol. 5160, 2008, pp. 81–95.

[24] J. Groote and R. Mateescu, “Verification of temporal proper-
ties of processes in a setting with data,” in Proc. of the 7th Int.
Conf. on Algebraic Methodology and Software Technology
(AMAST), ser. LNCS, vol. 1548, 1998, pp. 74–90.

[25] J. Groote and T. Willemse, “Model-checking processes with
data,” Science of Computer Programming, vol. 56, no. 3, pp.
251–273, 2005.

[26] S. Blom and J. van de Pol, “State space reduction by proving
confluence,” in Proc. of the 14th Int. Conf. on Computer Aided
Verification (CAV), ser. LNCS, vol. 2404, 2002, pp. 596–609.

[27] J.-P. Katoen, J. van de Pol, M. Stoelinga, and M. Timmer, “A
linear process algebraic format for probabilistic systems with
data (extended version),” TR-CTIT-10-11, CTIT, University
of Twente, Tech. Rep., 2010.

[28] R. Segala, “Modeling and verification of randomized dis-
tributed real-time systems,” Ph.D. dissertation, Massachusetts
Institute of Technology, 1995.

[29] R. Milner, Communication and Concurrency. Prentice Hall,
1989.

[30] W. Fokkink and J. Pang, “Variations on Itai-Rodeh leader
election for anonymous rings and their analysis in PRISM,”
Journal of Universal Computer Science, vol. 12, no. 8, pp.
981–1006, 2006.

222

