An extended test coverage framework From potential to actual coverage

Mark Timmer

March 12, 2008

(日) (四) (문) (문) (문)

Contents

*ロ * * @ * * 注 * * 注 *

æ

Motivation for research on testing

- Software is getting more and more complex
- Bugs cost a lot of money
- Testing is a large part of software development

Motivation for research on testing

- Software is getting more and more complex
- Bugs cost a lot of money
- Testing is a large part of software development

Motivation for research on test coverage

- Testing is inherently incomplete
- A notion of *quality* of a test suite is necessary

Motivation for research on testing

- Software is getting more and more complex
- Bugs cost a lot of money
- Testing is a large part of software development

Motivation for research on test coverage

- Testing is inherently incomplete
- A notion of *quality* of a test suite is necessary

Motivation for my research project

- Previous work by Laura Brandán Briones, Marielle and Ed
- Ideas for several improvements

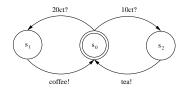
Contents

*ロ * * @ * * 注 * * 注 *

æ

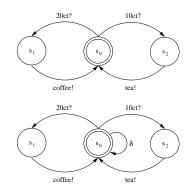
Definition LTSs

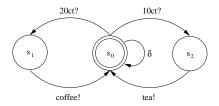
- LTS $\mathcal{A} = \langle S, s^0, L, \Delta \rangle$, such that
 - S: set of states
 - s⁰: initial state
 - L: set of actions (partitioned into *input actions* and *output actions*)
 - Δ: transition relation (assumed deterministic)



Definition LTSs

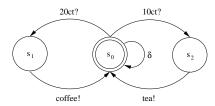
- LTS $\mathcal{A} = \langle S, s^0, L, \Delta \rangle$, such that
 - S: set of states
 - s⁰: initial state
 - L: set of actions (partitioned into *input actions* and *output actions*)
 - Δ: transition relation (assumed deterministic)

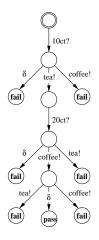




æ

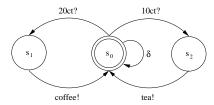
- < 注 → - < 注 → - -





æ

伺 ト イヨト イヨト



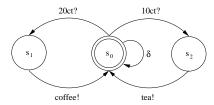
• Perform an input



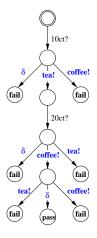
э

- ₹ 🖬 🕨

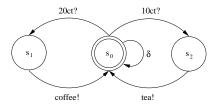
- ₹ 🖬 🕨



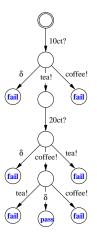
- Perform an input
- Observe all outputs

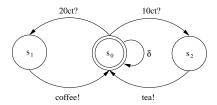


3 K 3



- Perform an input
- Observe all outputs
- Always stop after an error

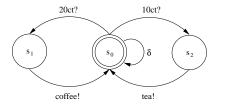




э

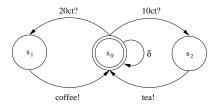
∃ >

.⊒ . ►



f (coffee!) = 10

-

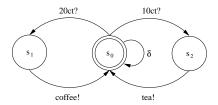


$$\begin{array}{ll} (coffee!) & = 10 \\ (10ct? tea!) & = 0 \end{array}$$

3 N 3

f

f

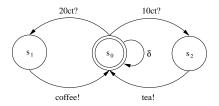


$$\begin{array}{ll} f(coffee!) &= 10 \\ f(10ct? tea!) &= 0 \\ f(10ct? coffee!) &= 5 \end{array}$$

-

э

∃ >

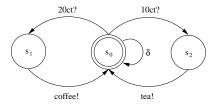


f(coffee!)	= 10
f(10ct? tea!)	= 0
f(10ct? coffee!)	= 5
f(10ct? tea! 10ct? coffee!)	= 3

э

∃ >

.⊒ . ►



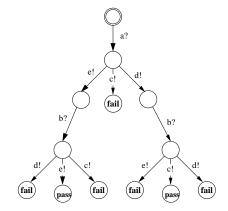
f(coffee!)	= 10
f(10ct? tea!)	= 0
f(10ct? coffee!)	= 5
f(10ct? tea! 10ct? coffee!)	= 3

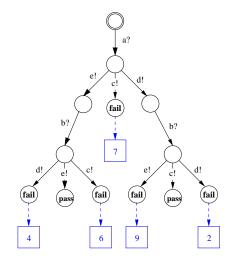
< E

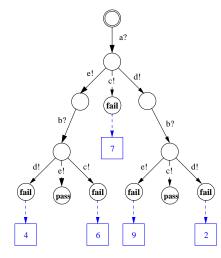
∃ >

Restriction on weighted fault models

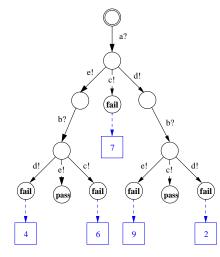
$$0<\sum_{\sigma\in L^*}f(\sigma)<\infty$$





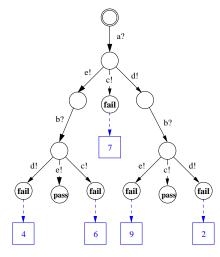


Assume
$$\sum_{\sigma \in L^*} f(\sigma) = 150$$



Assume
$$\sum_{\sigma \in L^*} f(\sigma) = 150$$

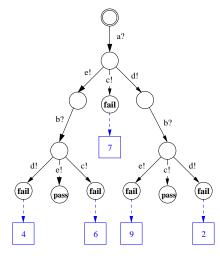
$$totCov_p = 150$$



Assume
$$\sum_{\sigma \in L^*} f(\sigma) = 150$$

$$totCov_p = 150$$

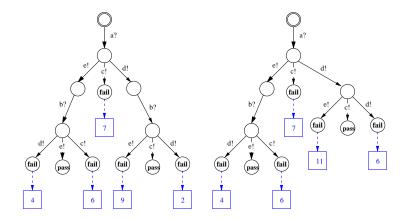
$$absCov_p = 7 + 4 + 6 + 9 + 2 = 28$$

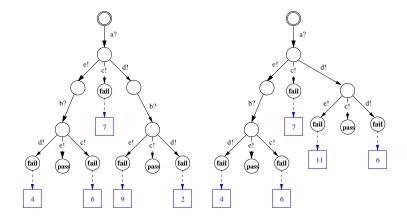


Assume
$$\sum_{\sigma \in L^*} f(\sigma) = 150$$

$$totCov_{p} = 150$$

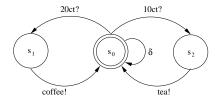
 $absCov_{p} = 7 + 4 + 6 + 9 + 2 = 28$
 $relCov_{p} = \frac{28}{150} = 0.19$





 $absCov_p = 7 + 4 + 6 + 9 + 2 + 11 + 6 = 45$

Preliminaries - Fault automata

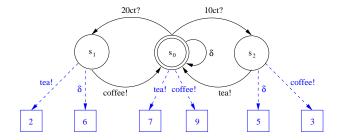


æ

< ∃ →

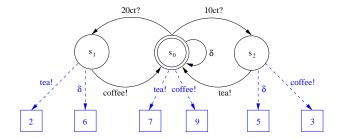
- ₹ 🖬 🕨

Preliminaries - Fault automata



문 🛌 문

Preliminaries - Fault automata



Definition of fault automata (FAs)

Fault automaton: an LTS and a function r assigning these weights. We require that r(s, a!) = 0 for correct outputs.

From fault automaton to weighted fault model

Problem: infinite traces over FA, so $\sum_{\sigma \in L^*} f(\sigma) ot < \infty$

Problem: infinite traces over FA, so $\sum_{\sigma \in L^*} f(\sigma) ot < \infty$

Solutions:

- Discard traces with length larger than some threshold
- Discount error weights by their depth

Problem: infinite traces over FA, so $\sum_{\sigma \in L^*} f(\sigma) ot < \infty$

Solutions:

- Discard traces with length larger than some threshold
- Discount error weights by their depth

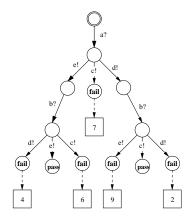
Not relevant for my work.

Contents

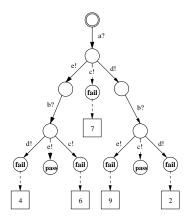
*ロ * * @ * * 注 * * 注 *

æ

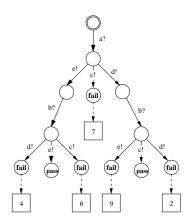
Limitations of potential coverage



Limitations of potential coverage



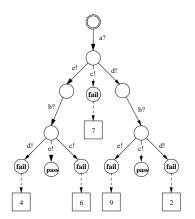
Previous work on potential coverage: $absCov_p(f, t) = 28$



Previous work on potential coverage: $absCov_p(f, t) = 28$

Limitations of potential coverage

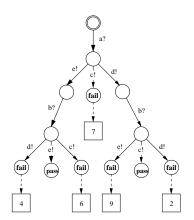
• Errors that are *potentially* covered



Previous work on potential coverage: $absCov_p(f, t) = 28$

Limitations of potential coverage

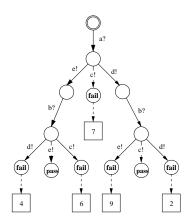
- Errors that are *potentially* covered
- All these errors are not actually covered in every execution



Previous work on potential coverage: $absCov_p(f, t) = 28$

Limitations of potential coverage

- Errors that are *potentially* covered
- All these errors are not actually covered in every execution
- What if the test case is executed multiple times?



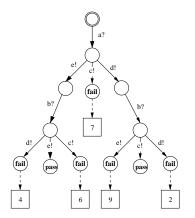
Previous work on potential coverage: $absCov_p(f, t) = 28$

Limitations of potential coverage

- Errors that are *potentially* covered
- All these errors are not actually covered in every execution
- What if the test case is executed multiple times?

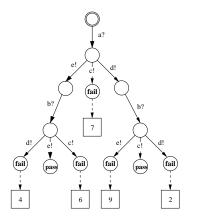
Actual coverage

• What is actually covered



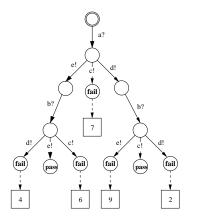
Actual coverage

• Execution coverage: Faults covered when observing a specific execution



Actual coverage

- Execution coverage: Faults covered when observing a specific execution
- Actual coverage: Probability mass distribution expressing execution coverage of single or sequence of executions



Actual coverage

- Execution coverage: Faults covered when observing a specific execution
- Actual coverage: Probability mass distribution expressing execution coverage of single or sequence of executions
- Expected actual coverage

Probability mass distribution expressing execution coverage of single or sequence of executions

• Indication of confidence in our knowledge on error presence

- Indication of confidence in our knowledge on error presence
- Include number of executions. More executions, more coverage

- Indication of confidence in our knowledge on error presence
- Include number of executions. More executions, more coverage
- For $n \to \infty$ executions, equal to potential coverage

- Indication of confidence in our knowledge on error presence
- Include number of executions. More executions, more coverage
- For $n \to \infty$ executions, equal to potential coverage
- Observing an error: total coverage

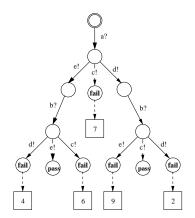
- Indication of confidence in our knowledge on error presence
- Include number of executions. More executions, more coverage
- For $n \to \infty$ executions, equal to potential coverage
- Observing an error: total coverage
- *Not* observing an error: increase of coverage, yet no total coverage

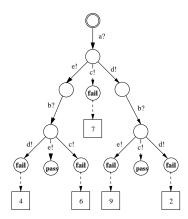
Contents

*ロ * * @ * * 注 * * 注 *

æ

Actual coverage: Which errors will actually be covered?

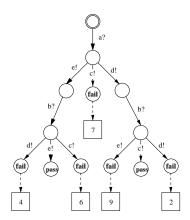




Actual coverage: Which errors will actually be covered?

Necessary:

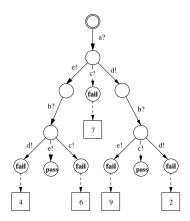
• Probabilistic transition behaviour



Actual coverage: Which errors will actually be covered?

Necessary:

- Probabilistic transition behaviour
- Occurrence probabilities



Actual coverage: Which errors will actually be covered?

Necessary:

- Probabilistic transition behaviour
- Occurrence probabilities

Approach:

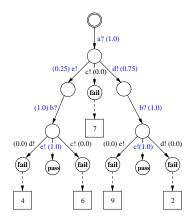
- Probabilities of correct outputs
- Probabilities of the presence of errors
- Probabilities of the occurrence of erroneous behaviour

Contents

*ロ * * @ * * 注 * * 注 *

æ

Probabilities of correct outputs



Definition of the correctness probability function

Correctness probability function:

- 0 for incorrect outputs
- 0 for transitions not included in the test case

Values known from implementation or measured.

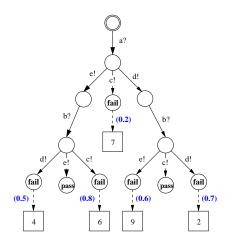
Probabilities of the presence and occurrence of errors

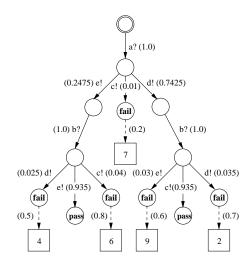
Fault presence function

Gives the probability that a certain error is made

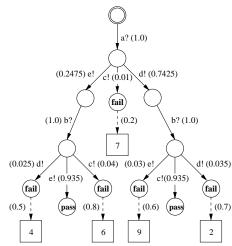
Error occurrence function

Gives the probability that a certain error occurs, *given its presence*





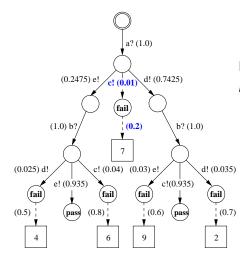
3 N 3



Erroneous outputs:

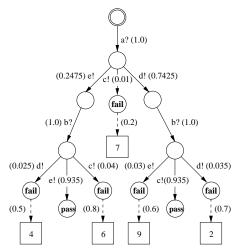
 $p = p_f \times p_o$

э



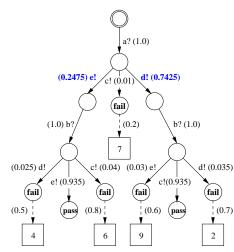
Erroneous outputs: $p = p_f \times p_o$

Mark Timmer An extended test coverage framework



Erroneous outputs: $p = p_f \times p_o$

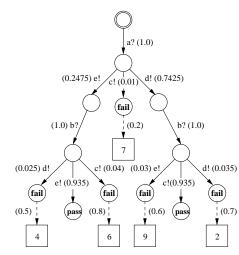
Correct outputs: $p = p_c imes (1 - \sum p_{error})$



Erroneous outputs: $p = p_f \times p_o$

Correct outputs: $p = p_c imes (1 - \sum p_{error})$

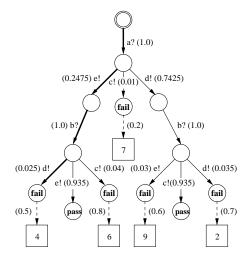
Path probabilities



p(a? e! b?)(d!) = 0.025

3 N 3

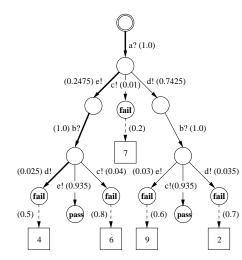
Path probabilities



p(a? e! b?)(d!) = 0.025

3 N 3

Path probabilities



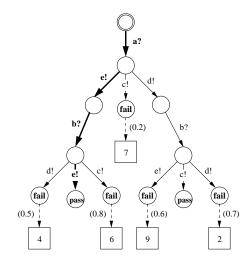
p(a? e! b?)(d!) = 0.025

 $\bar{p}(a? \ e! \ b? \ d!) =$ 1.0 \cdot 0.2475 \cdot 1.0 \cdot 0.025 = 0.006

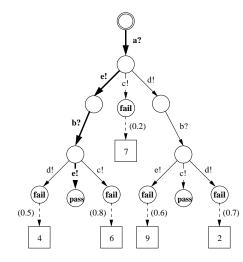
Contents

*ロ * * @ * * 注 * * 注 *

æ

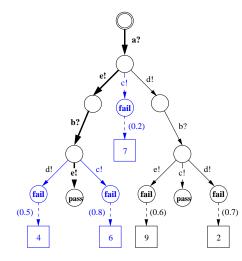


문 🛌 문

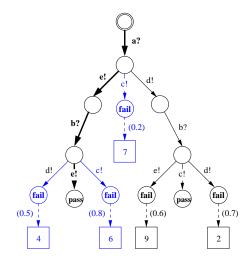


• An execution *covers* an error if it passes it.

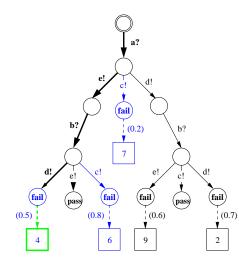
э



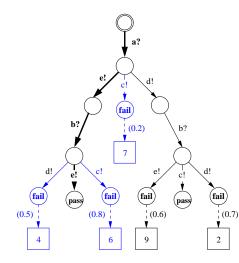
• An execution *covers* an error if it passes it.



- An execution *covers* an error if it passes it.
- Coverage fraction: the confidence in our knowledge.



- An execution *covers* an error if it passes it.
- Coverage fraction: the confidence in our knowledge.
- Observing an error yields total certainty: *CovFrac* = 1.

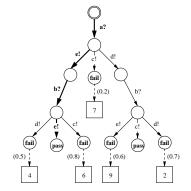


- An execution *covers* an error if it passes it.
- Coverage fraction: the confidence in our knowledge.
- Observing an error yields total certainty: *CovFrac* = 1.
- Not observing an error *n* times: $CovFrac = 1 - (1 - p_o)^n$

Contents

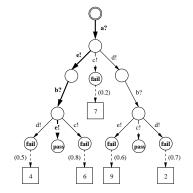
*ロ * * @ * * 注 * * 注 *

æ



Def. of execution coverage

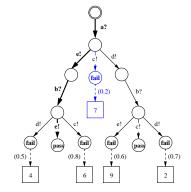
$$absExCov(\sigma, t, f, p_o) = \sum_{\sigma' \in t} f(\sigma') \cdot \text{CovFrac}(\sigma', p_o, \sigma)$$



absExCov(..) =

Def. of execution coverage

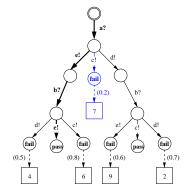
$$absExCov(\sigma, t, f, p_o) = \sum_{\sigma' \in t} f(\sigma') \cdot \text{CovFrac}(\sigma', p_o, \sigma)$$



absExCov(..) =

Def. of execution coverage

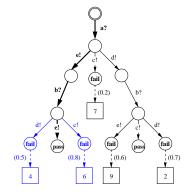
$$absExCov(\sigma, t, f, p_o) = \sum_{\sigma' \in t} f(\sigma') \cdot \text{CovFrac}(\sigma', p_o, \sigma)$$



Def. of execution coverage

$$\begin{aligned} & \textit{absExCov}(\sigma, t, f, p_o) = \\ & \sum_{\sigma' \in t} f(\sigma') \cdot \mathsf{CovFrac}(\sigma', p_o, \sigma) \end{aligned}$$

 $absExCov(..) = 7 \cdot (1 - (1 - 0.2)^1) +$

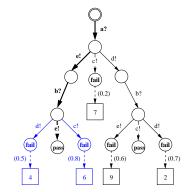


Def. of execution coverage

$$absExCov(\sigma, t, f, p_o) = \sum_{\sigma' \in t} f(\sigma') \cdot \text{CovFrac}(\sigma', p_o, \sigma)$$

э

 $absExCov(..) = 7 \cdot (1 - (1 - 0.2)^1) +$

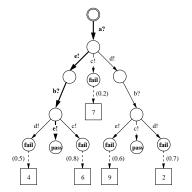


Def. of execution coverage

$$absExCov(\sigma, t, f, p_o) = \sum_{\sigma' \in t} f(\sigma') \cdot \text{CovFrac}(\sigma', p_o, \sigma)$$

э

 $absExCov(..) = 7 \cdot (1 - (1 - 0.2)^1) + 4 \cdot 0.5 + 6 \cdot 0.8 = 8.2$



Def. of execution coverage

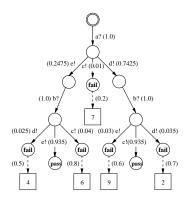
$$absExCov(\sigma, t, f, p_o) = \sum_{\sigma' \in t} f(\sigma') \cdot \text{CovFrac}(\sigma', p_o, \sigma)$$

absExCov(..) = $7 \cdot (1 - (1 - 0.2)^1) + 4 \cdot 0.5 + 6 \cdot 0.8 = 8.2$ For three times this execution: absExCov(..) = $7 \cdot (1 - (1 - 0.2)^3) + \cdots = 12.868$

Contents

*ロ * * @ * * 注 * * 注 *

æ

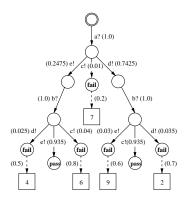


Actual coverage of a single execution

The actual coverage of a single execution is a random variable.

$$\mathbb{P}[\textit{absCov}^{\mathsf{single}}_{t,f,p,p_o} = x] =$$

$$\sum_{\substack{\sigma \in \mathsf{exec}_t \\ \mathsf{absExCov}(\sigma, t, f, p_o) = x}} \bar{p}(\sigma)$$



Actual coverage of a sequence of executions

The actual coverage of a sequence of execution is also a random variable.

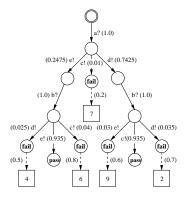
$$\mathbb{P}[\textit{absCov}^n_{t,f,p,p_o} = x] =$$

$$\sum_{\substack{E \in \mathsf{exec}_t^n \\ \mathsf{absExCov}(E,t,f,p_o) = x}} \bar{p}(E)$$

 $E(absCov_{t,f,p,p_o}^{single}) = \sum absExCov(\sigma, t, f, p_o) \cdot \bar{p}(\sigma)$ $\sigma \in exec_t$

伺 と く ヨ と く ヨ と

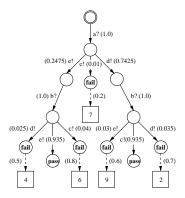
$$E(absCov_{t,f,p,p_o}^{single}) = \sum_{\sigma \in exec_t} absExCov(\sigma, t, f, p_o) \cdot \bar{p}(\sigma)$$



Potential coverage

Absolute potential coverage: 28

$$E(absCov_{t,f,p,p_o}^{single}) = \sum_{\sigma \in exec_t} absExCov(\sigma, t, f, p_o) \cdot \bar{p}(\sigma)$$



Potential coverage

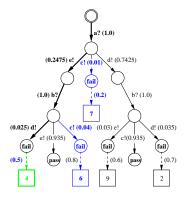
Absolute potential coverage: 28

Actual coverage

$$\begin{split} & E(absCov_{t,f,p,p_0}^{single}) = \\ & absExCov(a? e! b? d!, t, f, p_0) \cdot \bar{p}(a? e! b? d!) + \\ & absExCov(a? e! b? e!, t, f, p_0) \cdot \bar{p}(a? e! b? e!) + \\ & absExCov(a? e! b? c!, t, f, p_0) \cdot \bar{p}(a? e! b? c!) + \\ & \cdots + absExCov(a? c!, t, f, p_0) \cdot \bar{p}(a? c!) \end{split}$$

< 日 > < 同 > < 三 > < 三 >

$$E(absCov_{t,f,p,p_o}^{single}) = \sum_{\sigma \in exec_t} absExCov(\sigma, t, f, p_o) \cdot \bar{p}(\sigma)$$



Potential coverage

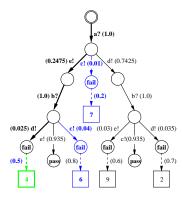
Absolute potential coverage: 28

Actual coverage

$$\begin{split} & E(absCov_{ingle}^{single}) = \\ & absExCov(a? \; el \; b? \; dl, \; t, \; f, \; p_o) \cdot \bar{p}(a? \; el \; b? \; dl) + \\ & absExCov(a? \; el \; b? \; el, \; t, \; f, \; p_o) \cdot \bar{p}(a? \; el \; b? \; dl) + \\ & absExCov(a? \; el \; b? \; el, \; t, \; f, \; p_o) \cdot \bar{p}(a? \; el \; b? \; el) + \\ & absExCov(a? \; el \; b? \; cl, \; t, \; f, \; p_o) \cdot \bar{p}(a? \; el \; b? \; cl) + \\ & \cdots + absExCov(a? \; cl, \; t, \; f, \; p_o) \cdot \bar{p}(a? \; cl) \end{split}$$

< 日 > < 同 > < 三 > < 三 >

$$E(absCov_{t,f,p,p_o}^{single}) = \sum_{\sigma \in exec_t} absExCov(\sigma, t, f, p_o) \cdot \bar{p}(\sigma)$$



Potential coverage

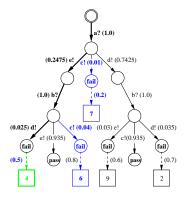
Absolute potential coverage: 28

Actual coverage

$$\begin{split} & E(absCov_{single}^{single}) = \\ & (7 \cdot 0.2 + 4 \cdot 1 + 6 \cdot 0.8) \cdot \bar{p}(a? \ e! \ b? \ d!) + \\ & absExCov(a? \ el \ b? \ el, \ t, \ f, \ p_o) \cdot \bar{p}(a? \ el \ b? \ e!) + \\ & absExCov(a? \ el \ b? \ cl, \ t, \ f, \ p_o) \cdot \bar{p}(a? \ el \ b? \ cl) + \\ & \cdots + absExCov(a? \ cl, \ t, \ f, \ p_o) \cdot \bar{p}(a? \ cl) \end{split}$$

< 日 > < 同 > < 三 > < 三 >

$$E(absCov_{t,f,p,p_o}^{single}) = \sum_{\sigma \in exec_t} absExCov(\sigma, t, f, p_o) \cdot \bar{p}(\sigma)$$



Potential coverage

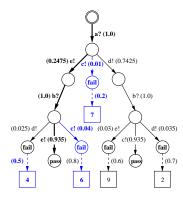
Absolute potential coverage: 28

Actual coverage

 $\begin{array}{l} E(absCov_{ingle}^{single}) = \\ (7 \cdot 0.2 + 4 \cdot 1 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.025) + \\ absExCov(a? el b? el, t, f, p_0) \cdot \bar{p}(a? el b? el) + \\ absExCov(a? el b? cl, t, f, p_0) \cdot \bar{p}(a? el b? cl) + \\ \cdots + absExCov(a? cl, t, f, p_0) \cdot \bar{p}(a? cl) \end{array}$

< 日 > < 同 > < 三 > < 三 >

$$E(absCov_{t,f,p,p_o}^{single}) = \sum_{\sigma \in exec_t} absExCov(\sigma, t, f, p_o) \cdot \bar{p}(\sigma)$$



Potential coverage

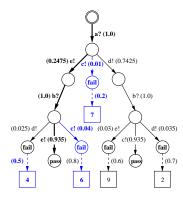
Absolute potential coverage: 28

Actual coverage

 $\begin{array}{l} E(absCov_{ingle}^{single}) = \\ (7 \cdot 0.2 + 4 \cdot 1 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.025) + \\ absExCov(a? el b? el, t, f, p_0) \cdot \bar{p}(a? el b? el) + \\ absExCov(a? el b? cl, t, f, p_0) \cdot \bar{p}(a? el b? cl) + \\ \cdots + absExCov(a? cl, t, f, p_0) \cdot \bar{p}(a? cl) \end{array}$

< 日 > < 同 > < 三 > < 三 >

$$E(absCov_{t,f,p,p_o}^{single}) = \sum_{\sigma \in exec_t} absExCov(\sigma, t, f, p_o) \cdot \bar{p}(\sigma)$$



Potential coverage

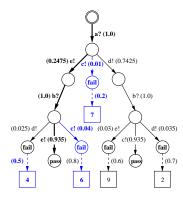
Absolute potential coverage: 28

Actual coverage

 $\begin{array}{l} E(absCov_{ingle}^{single}) = \\ (7 \cdot 0.2 + 4 \cdot 1 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.025) + \\ (7 \cdot 0.2 + 4 \cdot 0.5 + 6 \cdot 0.8) \cdot \bar{p}(a^{2} \ el \ b^{2} \ el) + \\ absExCov(a^{2} \ el \ b^{2} \ cl, \ t, \ f, \ p_{0}) \cdot \bar{p}(a^{2} \ el) \ b^{2} \ cl) + \\ \cdots + absExCov(a^{2} \ cl, \ t, \ f, \ p_{0}) \cdot \bar{p}(a^{2} \ cl) \end{array}$

< 日 > < 同 > < 三 > < 三 >

$$E(absCov_{t,f,p,p_o}^{single}) = \sum_{\sigma \in exec_t} absExCov(\sigma, t, f, p_o) \cdot \bar{p}(\sigma)$$



Potential coverage

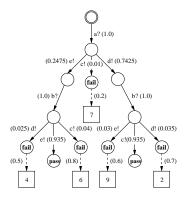
Absolute potential coverage: 28

Actual coverage

 $\begin{array}{l} E(absCov_{ingle}^{single}) = \\ (7 \cdot 0.2 + 4 \cdot 1 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.025) + \\ (7 \cdot 0.2 + 4 \cdot 0.5 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.035) + \\ absExCov(a? el \ b? \ cl, t, f, p_0) \cdot \bar{p}(a? \ el \ b? \ cl) + \\ \cdots + absExCov(a? \ cl, t, f, p_0) \cdot \bar{p}(a? \ cl) \end{array}$

< 日 > < 同 > < 三 > < 三 >

$$E(absCov_{t,f,p,p_o}^{single}) = \sum_{\sigma \in exec_t} absExCov(\sigma, t, f, p_o) \cdot \bar{p}(\sigma)$$



Potential coverage

Absolute potential coverage: 28

Actual coverage

 $\begin{array}{l} E(absCov_{ingle}^{single}) = \\ (7 \cdot 0.2 + 4 \cdot 1 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.025) + \\ (7 \cdot 0.2 + 4 \cdot 0.5 + 6 \cdot 0.8) \cdot (0.2475 \cdot 0.935) + \\ absExCov(a? el b? cl, t, f, p_0) \cdot \bar{p}(a? el b? cl) + \\ \cdots + absExCov(a? cl, t, f, p_0) \cdot \bar{p}(a? cl) = 8.3 \end{array}$

< 日 > < 同 > < 三 > < 三 >

$$E(absCov_{t,f,p,p_o}^n) = \sum_{E \in exec_t^n} absExCov(E, t, f, p_o) \cdot \bar{p}(E)$$

Expected value of the actual coverage for a sequence of executions

$$E(absCov_{t,f,p,p_o}^n) = \sum_{E \in exec_t^n} absExCov(E, t, f, p_o) \cdot \bar{p}(E)$$

Problem: exponential in *n*, so not very feasible in practice.

$$E(absCov_{t,f,p,p_o}^n) = \sum_{\sigma a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^n) \cdot 1 + \sum_{i=0}^n \binom{n}{i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma, a))^i (1 - (1 - p_o(\sigma, a))^i) \right) \right)$$

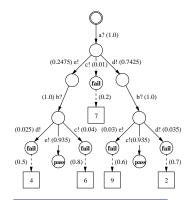
$$E(absCov_{t,f,p,p_o}^n) = \sum_{\sigma a \in t} \left(\mathbf{f}(\sigma \mathbf{a}) \cdot \left((\mathbf{1} - (\mathbf{1} - \bar{\mathbf{p}}(\sigma a))^n) \cdot \mathbf{1} + \sum_{i=0}^n \binom{n}{i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma, a))^i (1 - (1 - p_o(\sigma, a))^i) \right) \right)$$

$$E(absCov_{t,f,p,p_o}^n) = \sum_{\sigma a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^n) \cdot 1 + \sum_{i=0}^n \binom{n}{i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma, a))^i (1 - (1 - p_o(\sigma, a))^i) \right) \right)$$

$$E(absCov_{t,f,p,p_o}^n) = \sum_{\sigma a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^n) \cdot 1 + \sum_{i=0}^n {n \choose i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma, a))^i (1 - (1 - p_o(\sigma, a))^i) \right) \right)$$

$$E(absCov_{t,f,p,p_o}^n) = \sum_{\sigma a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^n) \cdot 1 + \sum_{i=0}^n \binom{n}{i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma, a))^i (1 - (1 - p_o(\sigma, a))^i) \right) \right)$$

$$E(absCov_{t,f,p,p_{\sigma}}^{n}) = \sum_{\sigma a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^{n}) \cdot 1 + \sum_{i=0}^{n} {n \choose i} \bar{p}(\sigma)^{i} (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma, a))^{i} (1 - (1 - p_{o}(\sigma, a))^{i}) \right) \right)$$



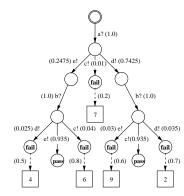
Actual coverage

$$E(absCov_{t,f,p,p_o}^{single}) = 8.3$$

Potential coverage

Absolute potential coverage: 28

$$E(absCov_{t,f,p,p_o}^5) =$$



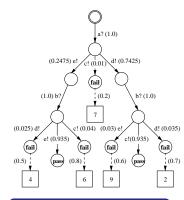
Actual coverage

$$E(absCov^{single}_{t,f,p,p_o}) = 8.3$$

Potential coverage

Absolute potential coverage: 28

$$E(absCov_{t,f,p,p_{o}}^{5}) = 7 \cdot \left((1 - (1 - 0.01)^{5}) \cdot 1 + \sum_{i=0}^{5} (1 - (1 - 0.01)^{i}) \cdot (1 - (1 - 0.2)^{i}) \right)$$

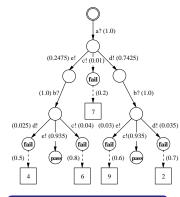


Actual coverage $E(absCov_{t,f,p,p_o}^{single}) = 8.3$

Potential coverage

Absolute potential coverage: 28

$$\begin{split} E(absCov_{t,f,p,p_o}^5) &= \\ 7 \cdot \left(\left(1 - (1 - 0.01)^5 \right) \cdot 1 + \sum_{i=0}^5 \left(\left(\frac{5}{i} \right) 1^i \cdot 0^{5-i} \cdot (1 - 0.01)^i \cdot (1 - (1 - 0.2)^i) \right) \right) \\ + 4 \cdot \left(\left(1 - (1 - 0.2475 \cdot 0.025)^5 \right) \cdot 1 + \sum_{i=0}^5 \left(\left(\frac{5}{i} \right) 0.2475^i \cdot (1 - 0.2475)^{5-i} \cdot (1 - 0.025)^i \cdot (1 - (1 - 0.5)^i) \right) \right) \\ + \cdots \end{split}$$



Actual coverage $E(absCov_{t,f,p,p_o}^{single}) = 8.3$

Potential coverage

Absolute potential coverage: 28

$$\begin{split} E(absCov_{t,f,p,p_{0}}^{5}) &= \\ 7 \cdot \left(\left(1 - (1 - 0.01)^{5} \right) \cdot 1 + \sum_{i=0}^{5} \left(\right. \\ \left. \left({}_{i}^{5} \right) 1^{i} \cdot 0^{5-i} \cdot (1 - 0.01)^{i} \cdot (1 - (1 - 0.2)^{i}) \right) \right) \\ + \left. 4 \cdot \left(\left(1 - (1 - 0.2475 \cdot 0.025)^{5} \right) \cdot 1 + \sum_{i=0}^{5} \left(\left. \left({}_{i}^{5} \right) 0.2475^{i} \cdot \right. \\ \left. (1 - 0.2475)^{5-i} \cdot (1 - 0.025)^{i} \cdot (1 - (1 - 0.5)^{i}) \right) \right) \\ + \cdots &= 21.45 \end{split}$$

Theorem

$$\lim_{n\to\infty} E(absCov_{t,f,p,p_o}^n) = absCov_p(t,f)$$

э

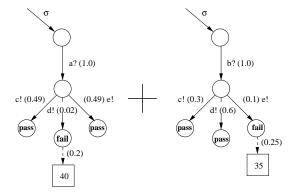
₽ > < €

Contents

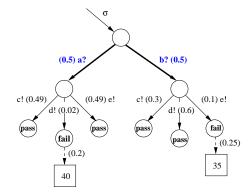
*ロ * * @ * * 注 * * 注 *

æ

Actual coverage of test suites

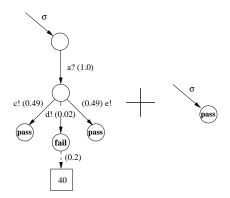


Actual coverage of test suites

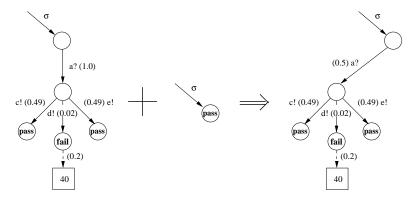


 $|T| \cdot n$ executions of supertest $\equiv n$ executions of test suite

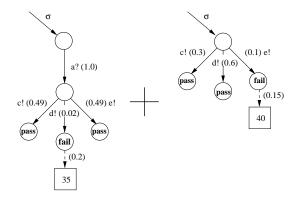
Actual coverage of test suites – different depth



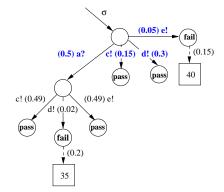
Actual coverage of test suites – different depth



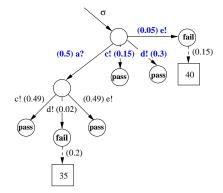
Actual coverage of test suites - input vs. output



Actual coverage of test suites - input vs. output



Actual coverage of test suites - input vs. output



 $|T| \cdot n$ executions of supertest $\equiv n$ executions of test suite Problem: $\sigma e!$ seems to be covered all the time

$$E(absCov_{t,f,p,p_o}^n) = \sum_{\sigma a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^n) \cdot 1 + \sum_{i=0}^n {n \choose i} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{n-i} (1 - p(\sigma, a)^i) (1 - (1 - p_o(\sigma, a))^i) \right) \right)$$

$$E(absCov_{t,f,p,p_o}^n) = \sum_{\sigma a \in t} \left(f(\sigma a) \cdot \left((1 - (1 - \bar{p}(\sigma a))^{\mathbf{c}(\sigma)_n}) \cdot 1 + \sum_{i=0}^{\mathbf{c}(\sigma)_n} {\binom{\mathbf{c}(\sigma)_n}{i}} \bar{p}(\sigma)^i (1 - \bar{p}(\sigma))^{\mathbf{c}(\sigma)_{n-i}} (1 - p(\sigma, a)^i) (1 - (1 - p_o(\sigma, a))^i) \right) \right)$$

 $c(\sigma)$: the fraction of test cases that observe after σ .

Contents

*ロ * * @ * * 注 * * 注 *

æ

• Defined a quiescence-preserving transformation of non-deterministic fault automata to deterministic fault automata

Conclusions

- Defined a quiescence-preserving transformation of non-deterministic fault automata to deterministic fault automata
- Developed a specification mechanism for probabilistic transition behaviour

Conclusions

- Defined a quiescence-preserving transformation of non-deterministic fault automata to deterministic fault automata
- Developed a specification mechanism for probabilistic transition behaviour
- Developed a notion of actual test coverage which applies to test cases *and* test suites, with polynomially computable expectations

- Defined a quiescence-preserving transformation of non-deterministic fault automata to deterministic fault automata
- Developed a specification mechanism for probabilistic transition behaviour
- Developed a notion of actual test coverage which applies to test cases *and* test suites, with polynomially computable expectations
- Indication of confidence in our knowledge on error presence
- Include number of executions. More executions, more coverage
- For $n \to \infty$ executions, equal to potential coverage
- Observing an error: total coverage
- Not observing an error: increase of coverage, yet no total coverage

Contents

*ロ * * @ * * 注 * * 注 *

æ

• Test evaluation

• Given results of executions, draw conclusions

э

- Test evaluation
 - Given results of executions, draw conclusions
- Test optimization
 - Construct test case of size k with maximum coverage

- Test evaluation
 - Given results of executions, draw conclusions
- Test optimization
 - Construct test case of size k with maximum coverage
 - Construct smallest test suite with *p* percent actual relative coverage

- Test evaluation
 - Given results of executions, draw conclusions
- Test optimization
 - Construct test case of size k with maximum coverage
 - Construct smallest test suite with *p* percent actual relative coverage

• ...